

Irritable Bowel Syndrome

Dan Carter MD

dr.dancarter@gmail.com

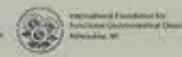
דוקטור

- כואבת לי הבטן המון זמן
- אני משלשלת , אבל גם סובלת מעצירות
 - יש לי נפיחות והמון גזים
- הייתי כבר אצל המון גסטרואנטרולוגים, ואף אחד
 לא עזר לי

• ד"ר, מה יש לי? (ד"ר תציל אותי....)

IBS: Patient's concerns

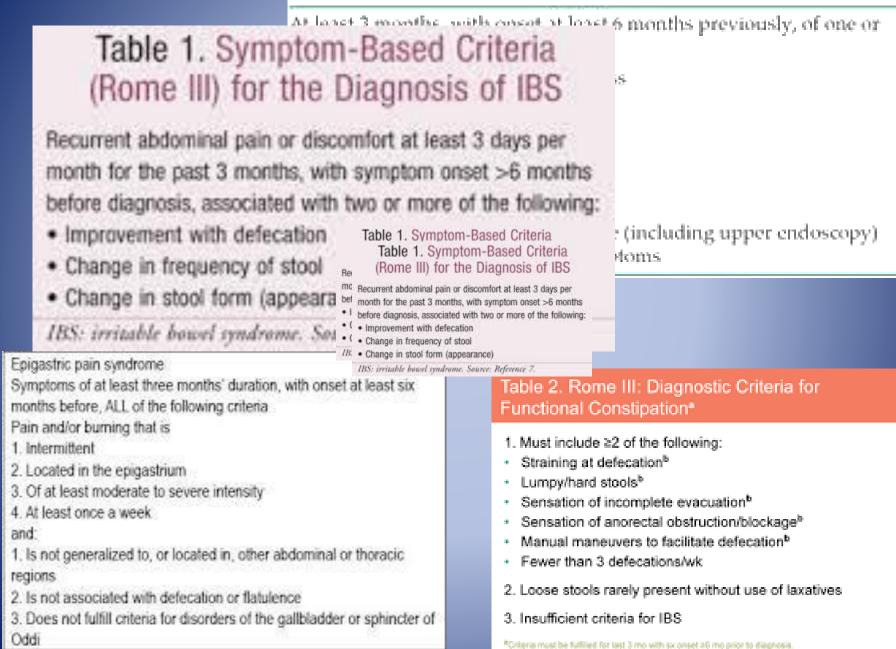
FUNCTIONAL GASTROINTESTINAL DISORDERS


APRIL 8-10, 2011

Tise Pfister Hotel Milwaukae, Wisconsin

CONTRACTORY CONTRACTORY

Security of Macazan School of Machine and Palatic Heads Office of Genetrating Perforsional Devolopment Machines, W


Definition of FGID

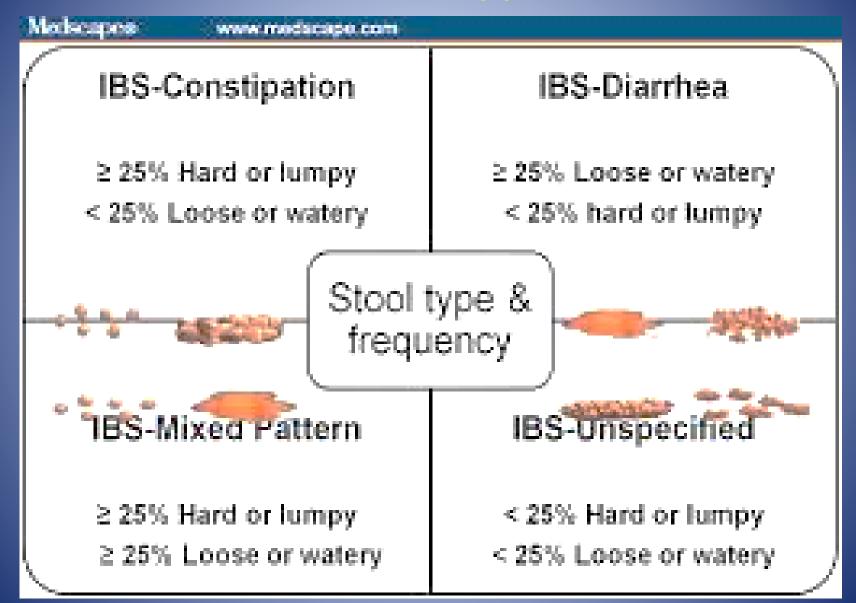
- Chronic and recurrent symptoms of the gastrointestinal (GI) tract:
 - Pain, nausea, vomiting, bloating, diarrhea, constipation
- Without detectable structural or biochemical abnormalities

•4

Table 1 : Rome III diagnostic criteria for functional dyspepsia.

Table 1. Symptom-Based Criteria (Rome III) for the Diagnosis of IBS

No pathological finding


unange in irequency or stoor

F

· Change in stool form (appearance)

IBS: irrita No pain, No IBS

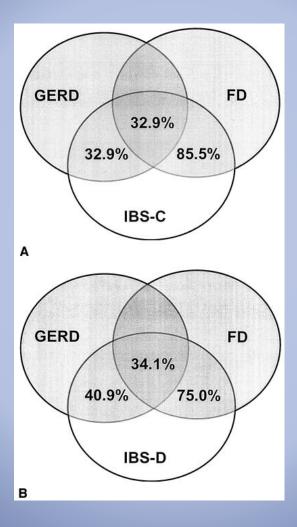
IBS Subtypes

CLASSIFYING IBS

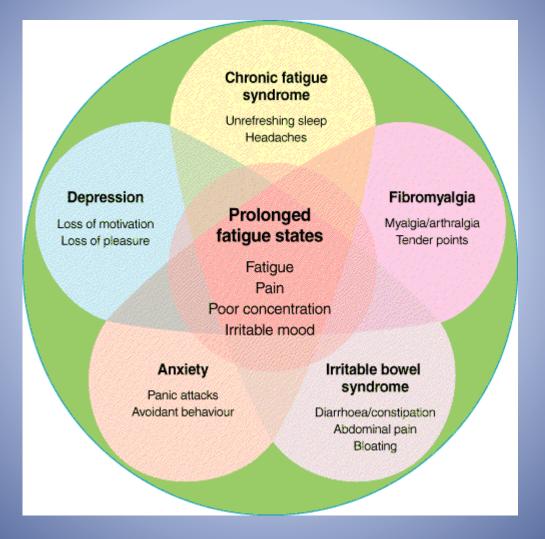
The three categories

IBS with diarrhoea predominance (IBS-D) **27%**

Alternating IBS and don't know (IBS-A) **39%** IBS with constipation predominance (IBS-C) **34%**


* The classification of an IBS case may influence its subsequent management Overlap with Other Functional Gastrointestinal Disorders

 Many population-based and clinical studies have reported the associations with other diseases, specifically other FGIDs.


 GERD and symptomatic bronchial hyperresponsiveness occurred more frequently together with IBS than expected.

Overlap with Other Functional Gastrointestinal Disorders

Overlap with Extra intestinal Disorders

Natural history of IBS

- IBS is considered a chronic stable disorder that may wax and wane for years.
- Substantial symptom fluctuation among the GI symptom complexes with increasing prevalence over time.
- IBS is not associated with any increase in mortality.

oped in 10 years

	n	Never IBS (%)	Lost IBS (%)	Retained IBS (%)	Developed IBS (%)
Manning	674	56.2	12.2	19.1	12.5
ielf-report	621	74.9	8.5	8.2	8.4
Rome III	749	81.4	5.7	4.3	8.7

Epidemiology

Irritable Bowel Syndrome

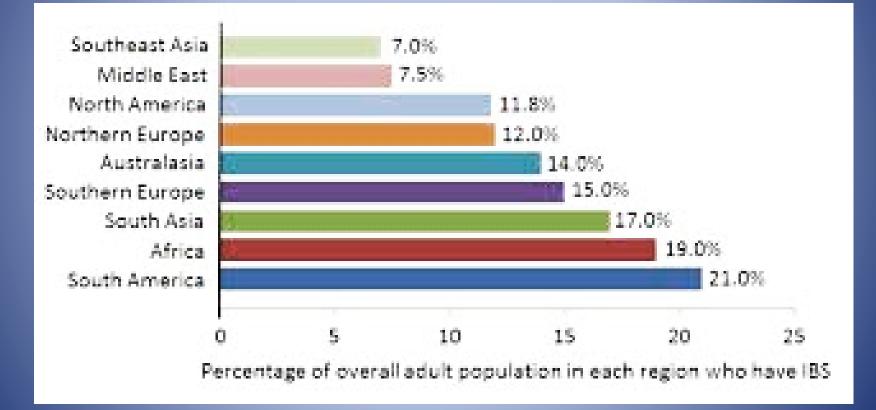
What is irritable bowel syndrome?

Irritable bowel syndrome (IBS) is a common disorder of the gut (includes the bowels). There is a problem with the function of a the gut but there is no abnormality in the structure.

Common symptoms

Painful cramps Bloating Diarrhea Constipation Mucus in stool

S


Did you know? Women are 2-3

Current treatment for irritiable bowel syndrome

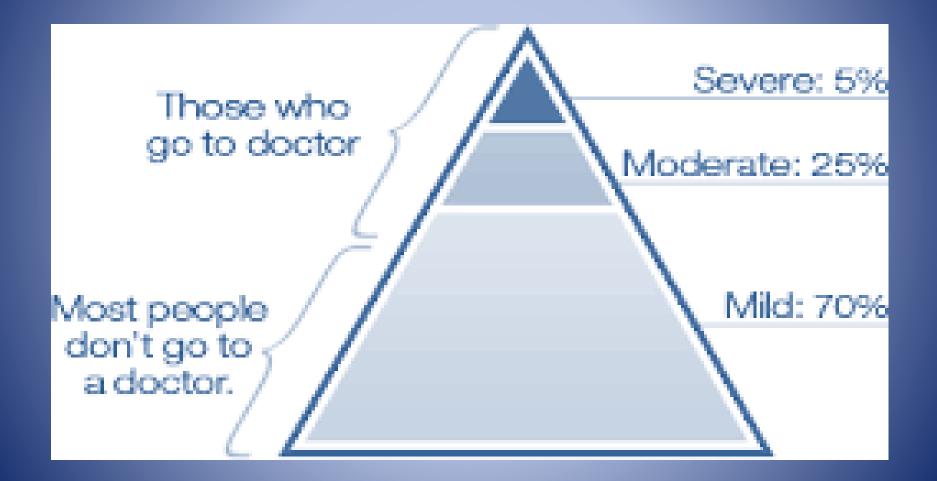
- Medication: Laxatives Antispasmodics Tricyclic antidepressants Serotinin antagonists Serotinin agonists
- Diet such as prune juice Exercise Psychotherapy Stress release

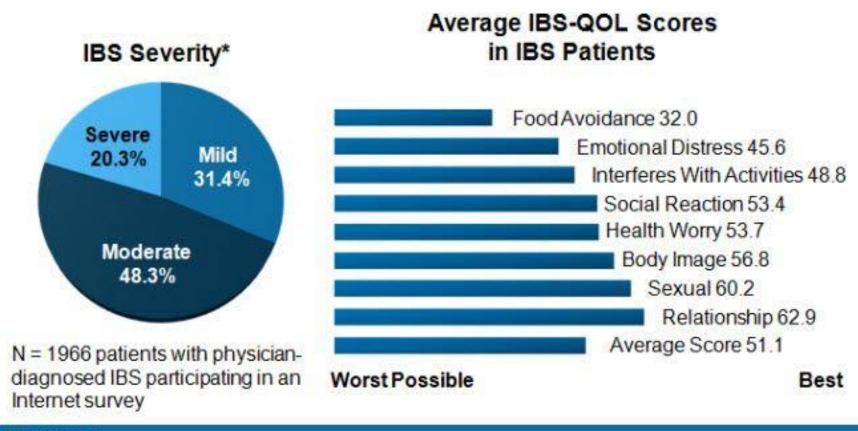
Source: www.totalhealth.co.uk


Worldwide Distribution of IBS

IBS is about 1.5x more common in women than in men* **10 with** IBS have diarrhea* 1 in 4 cases is considered severe*

IBS Severity

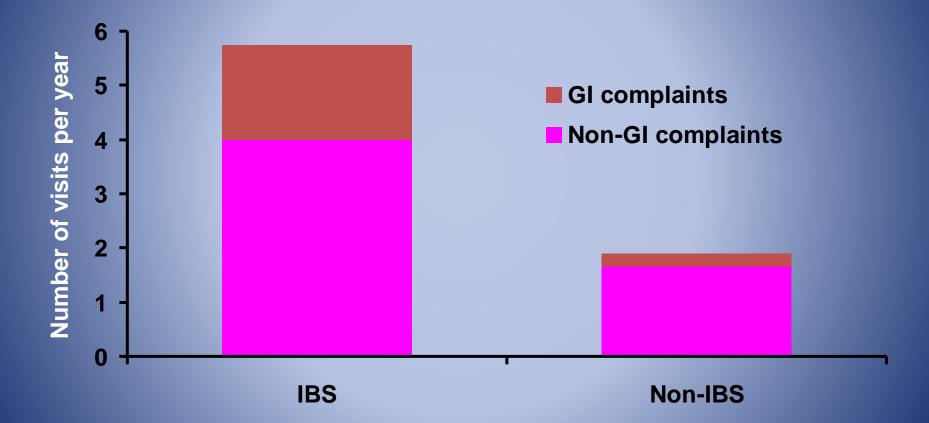

GI & Extra GI symptoms Degree of disability Illness related perceptions Illness related behavior


> Psychological distress

Drossman 2012

IBS Severity

Quality of life

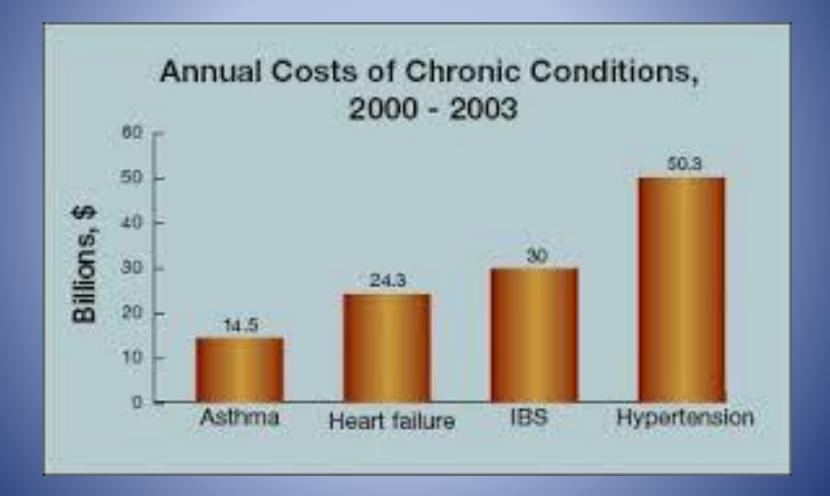

Medscape

Quality of life

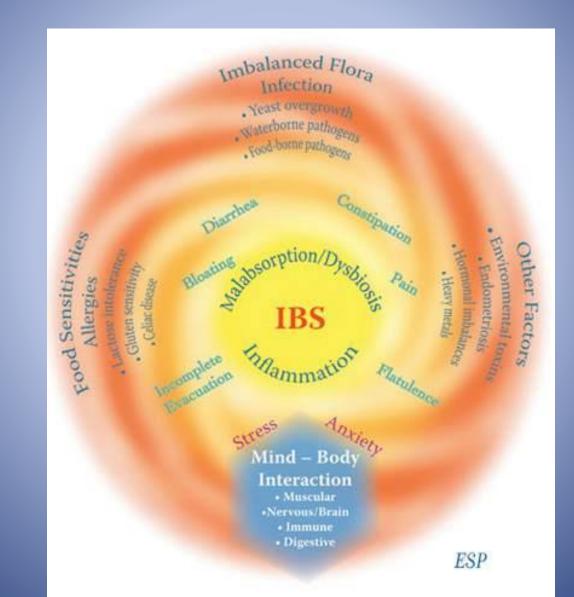
 IBS patients have the same physical HRQOL as patients with diabetes, and a lower physical HRQOL compared with patients who have depression or gastroesophageal reflux disease.

 The health utility of severe IBS is similar to that of Class 3 congestive heart failure and rheumatoid arthritis.

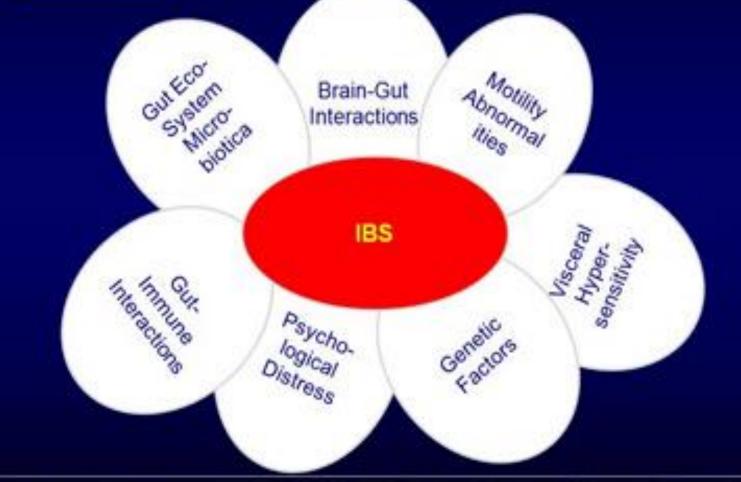
Physician visits per year

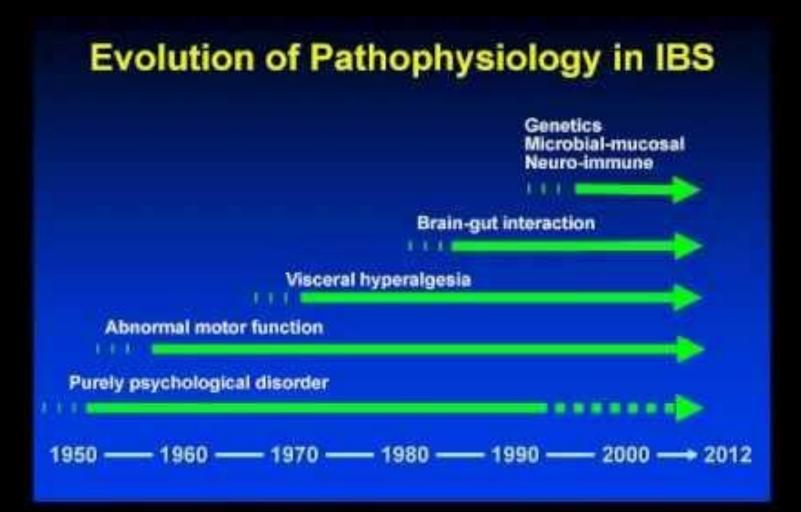

Drossman et al., 1993 AGA Teaching Unit in IBS, 1997

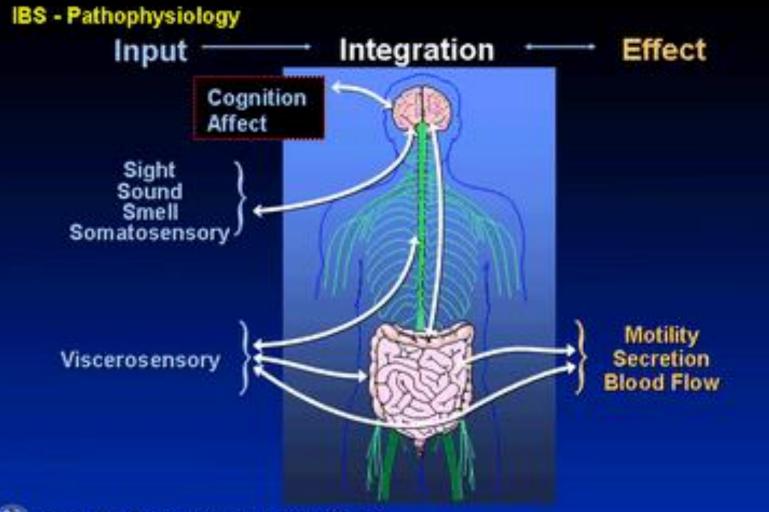
Essential Data on Costs in IBS


- \$41 billion estimated direct and indirect costs for IBS in 8 most industrialized countries
- \$25 billion in USA

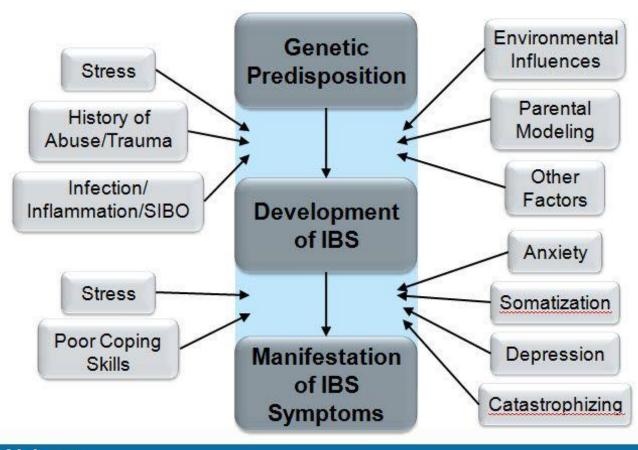
- \$8.4 billion direct charges in 1992.
- About 0.5% of entire health care budget

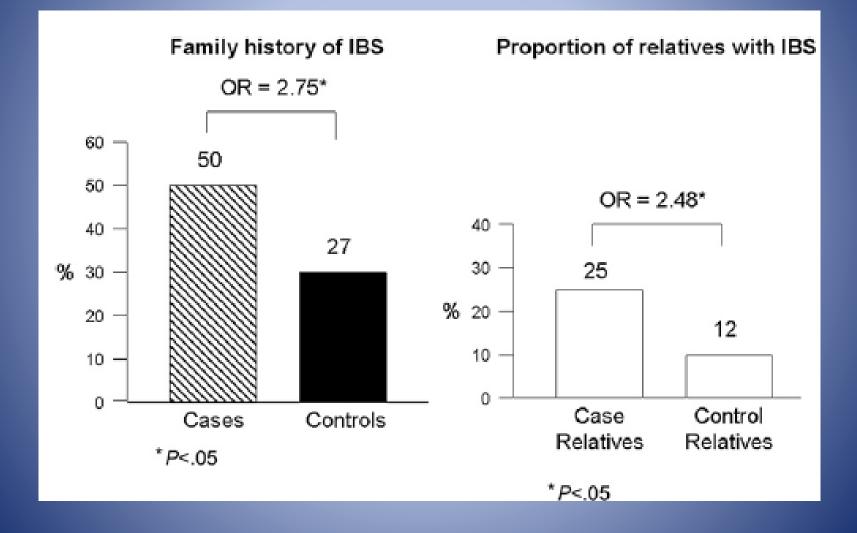



Pathophysiology

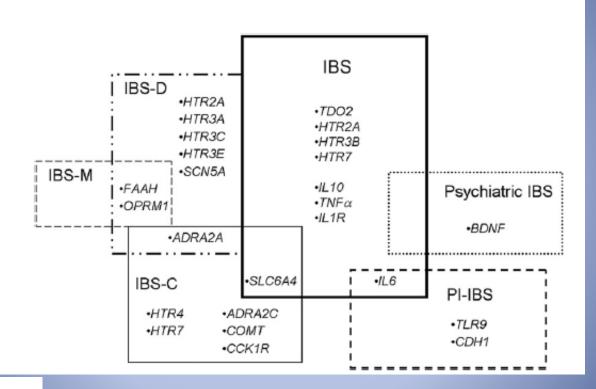


IBS is a Complex Syndrome Caused by Many System Interactions


Brandt, LJ, et al. Am J Gastroenterol. 2002;97: S7–S26; Al-Khatib K et al. Gut Liver. 2009;3:14-9. Thabane M et al. W J Gastro. 2009;15:3591-6. Manabe N et al. Sm Mus Res. 2009;45:15-23. Spiller R, et al. Gut. 2007;56:1770-98. Farhadi A et al. W J Gastro. 2007;13:3027-30. Frissora CL & Cash BD. APT. 2007;25:1271-81.


Mayer EA, Gastroenterology 1990; 99:1688

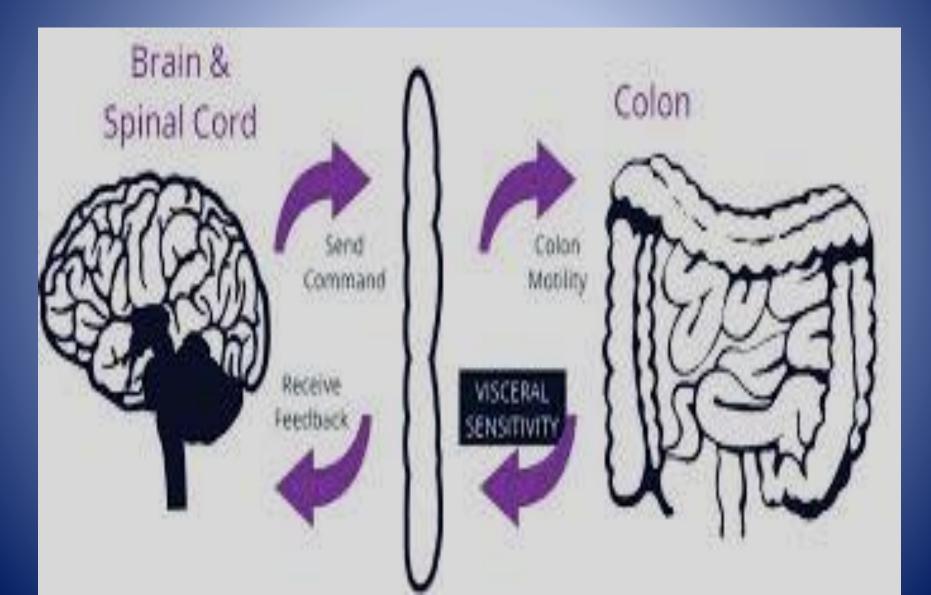
The Development of IBS



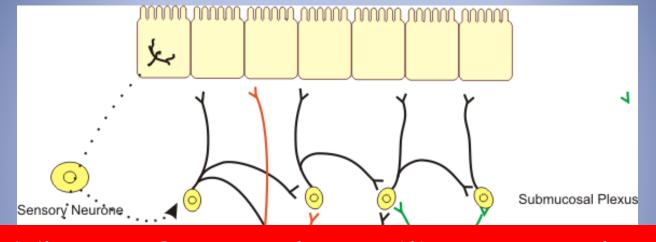
Medscape

The Role of Genetics in IBS

Positive gene associations in IBS



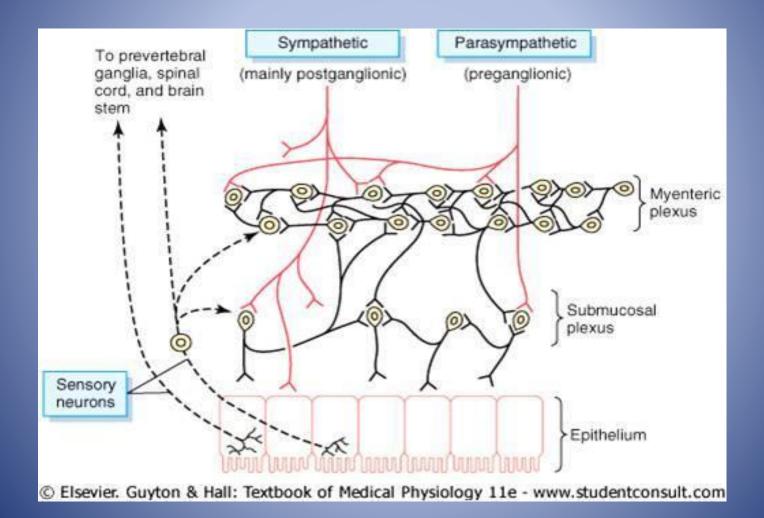
Altered visceral sensory activity


 Alterations in visceral and somatic perception are prevalent in IBS.

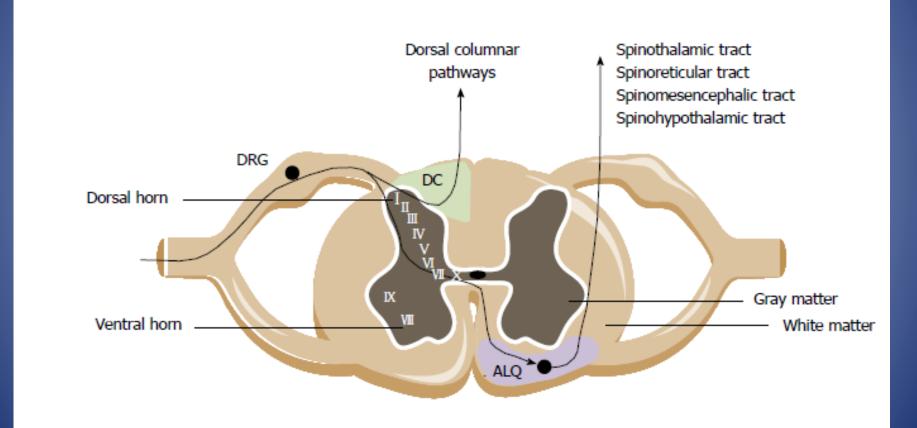
 Some patients with IBS experience normal physiologic events, not normally perceived by healthy individuals, as being uncomfortable or painful

Visceral Hypersensitivity

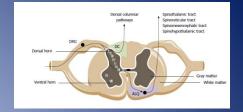
Enteric Nervous System


The ENS controls motility, mucosal secretion and absorption, mucosal growth, local blood flow and the immune function in the gut

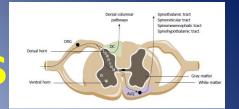
Sympathetic



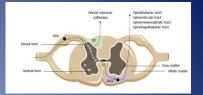
Frank Boumphrey M.D. 2009


Enteric Nervous System- Extrinsic Pathways

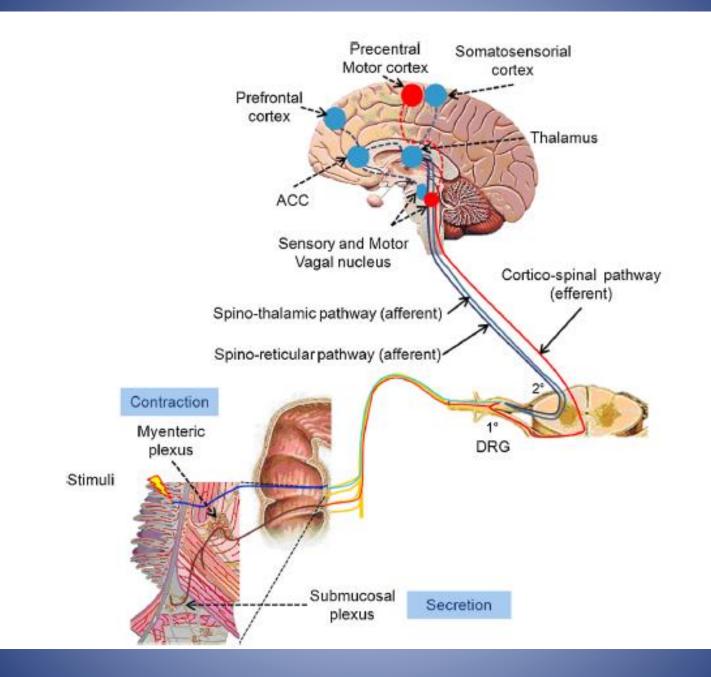
Ascending Pathways


Ascending Pathways

 The spinoreticular tract projects to the dorsal reticular nucleus in the brainstem, which is involved in the affective-motivational properties (emotional component of pain) of visceral stimulation.

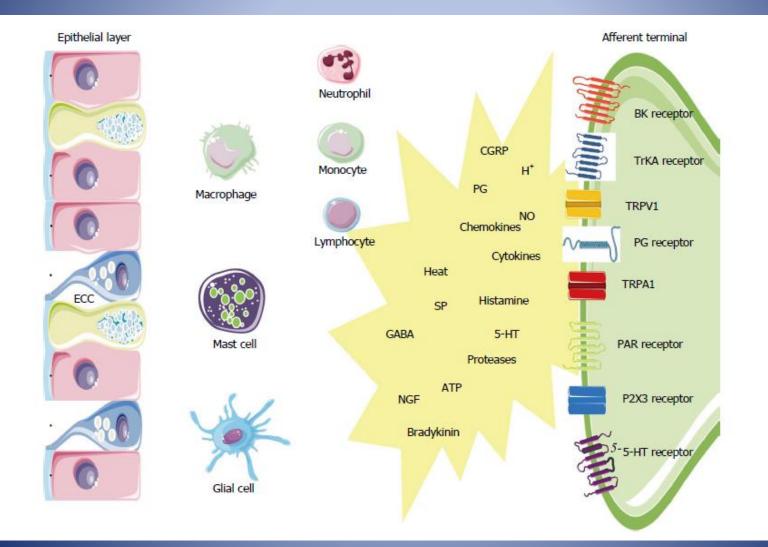

 The spinomesencephalic tract conveys information from the spinal cord to the periaqueductal gray and other midbrain regions.

Ascending Pathways


- The spinohypothalamic tract conducts sensory information from the spinal cord directly to the hypothalamus.
- The hypothalamus together with other parts of the limbic system (amygdala, medial thalamus, ACC), locus coeruleus and PAG regulate arousal and emotional, autonomic and behavioral responses.

Descending pathways

 Descending modulation of spinal nociceptive processing can be either inhibitory or facilitatory.


• Endogenous opioids are key mediators in the descending pain inhibitory pathways.

Mechanisms of Visceral Hypersensitivity

- Peripheral visceral afferent neurons
- Sensitization of spinal cord dorsal horn neurons
- Altered descending excitatory and inhibitory influences to the spinal cord nociceptive neurons
- Misinterpretation of innocuous sensation as noxious due to cognitive and emotional biasing (e.g., hypervigilance, pain catastrophizing)

Peripheral Sensitization

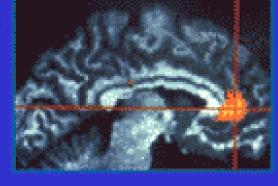
Central Sensitization

 Clinical evidence for a role of CNS sensitization in visceral pain comes from fMRI and PET studies.

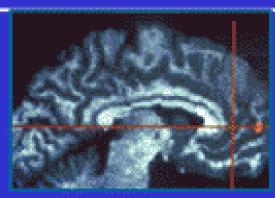
Comparison of PET Scans Showing Regional Brain Activity

Rectal distension

Anterior cingulate cortex activity



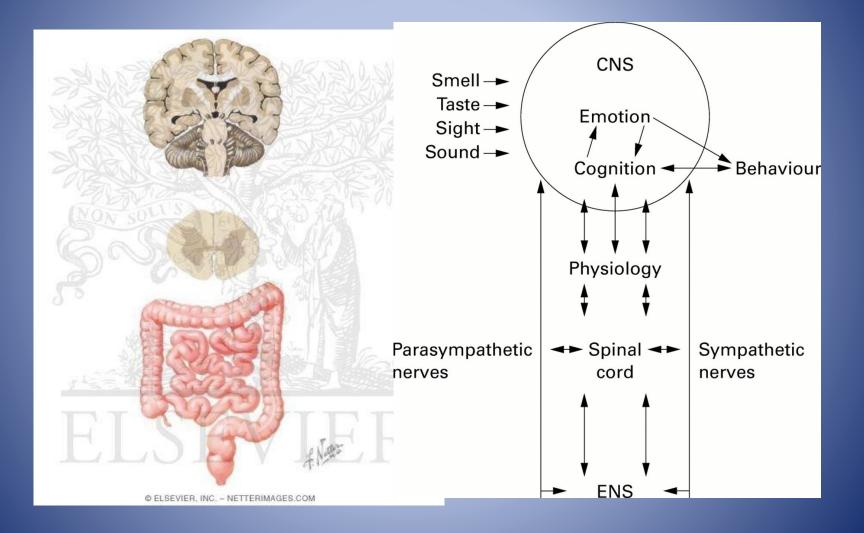
IBS


No anterior cingulate cortex activity

Normal

Anticipation of rectal distension

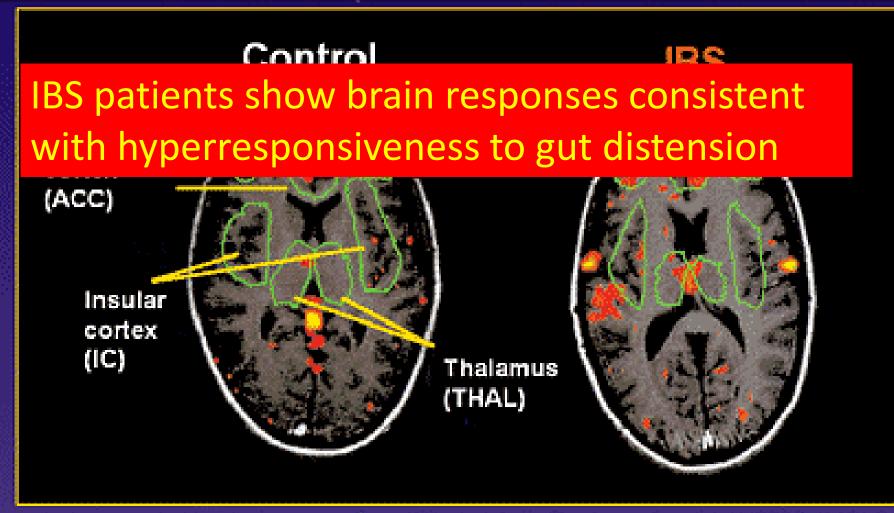
No prefrontal activity


Prefrontal activity

Adapted from Silverman DHS et al. Gastroenterology, 1997;112:64-72. Copyright 0/1997 by the American Gastroenterological Association.

Sensitized ascending and descending pathways

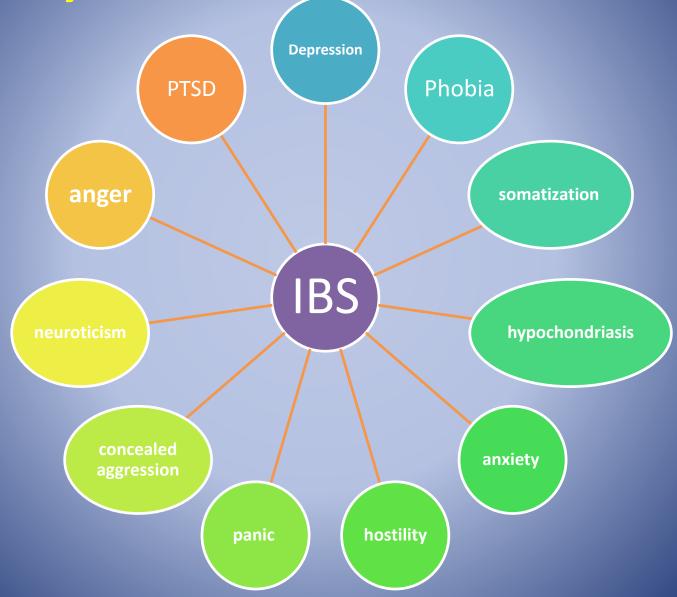
- Upon repetitive stimulation by extrinsic primary afferent neurons, intracellular signaling cascades are activated within the spinal dorsal horn neurons.
- This leads to amplified responses to both innocuous and noxious input.
- Impaired ability to activate the descending pain inhibitory system.


Cognitive and Emotional Biasing

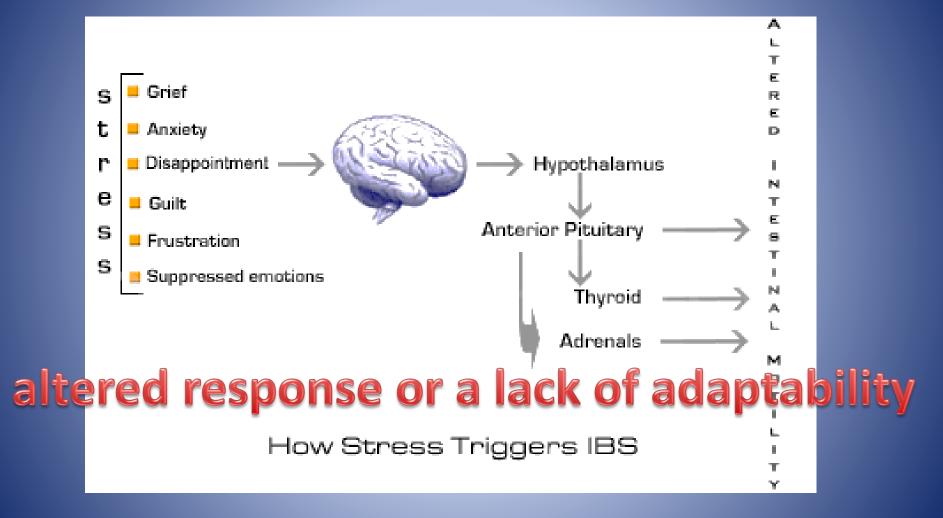
Brain-gut interactions

- CNS imaging studies have shown that IBS was associated with decreased gray matter density in various brain areas.
- Results from PET and fMRI investigations suggest that patients with IBS show significant disruptions of CNS activity related to attention, arousal, emotional, and autonomic responses to gut stimulation.
- Evoked potential recordings show results consistent with defects in visceral afferent pathways.

fMRI imaging with rectal distension in IBS



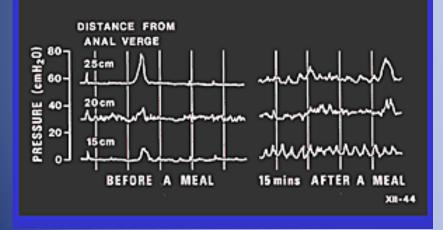
from Mertz et al, Gastroenterology 2000; 118: 842


Psychosocial Distress

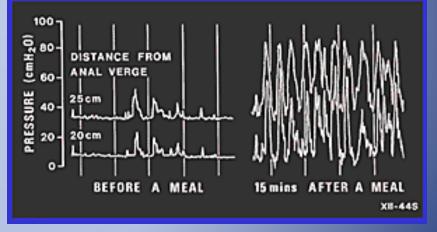
- Numerous studies confirm a high degree of psychosocial dysfunction in IBS.
- Psychiatric disturbances can be shown in most patients with IBS in tertiary practice, but also in patients managed in primary care and in individuals with IBS who do not seek care.
- Rates of suicidal behavior are increased 2- to 4-fold in IBS.

Psychosocial Comorbidities

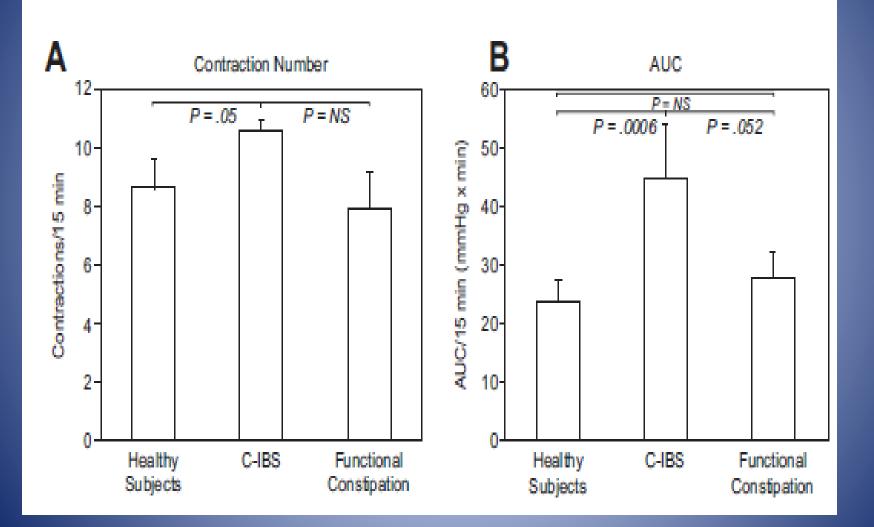
Stress and IBS



Motor Function Disturbance


- Abnormalities of phasic small bowel contractile activity have been characterized in different subtypes of IBS.
- Colonic motor abnormalities are prevalent in IBS, but correlate imperfectly with symptomatic bowel disturbances.
- In general, colon transit is accelerated in D-IBS and delayed in C-IBS.

Pathophysiology


Contractions of Sigmoid Colon After a Meal (Normal Human)

Contractions of Sigmoid Colon After a Meal (Spastic Colon Syndrome)

Motor dysfunction

Inflammation

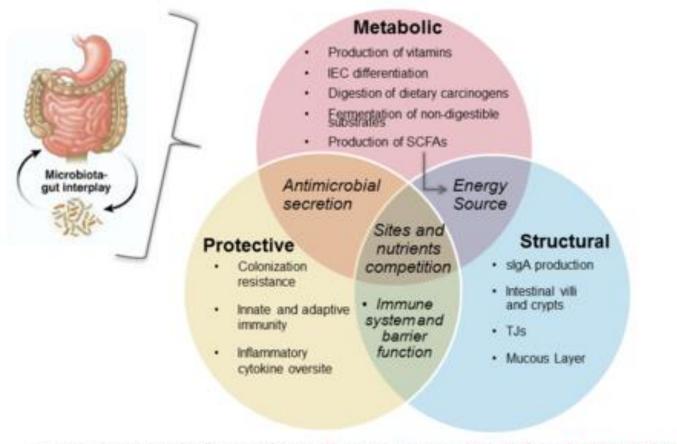
Serum and Colonic Mucosal Immune Markers in Irritable Bowel Syndrome

Lin Chang, MD^{1,2}, Mopelola Adeyerno, BS^{1,2}, Iordanis Karagiannidis, PhD^{2,3}, Elizabeth J. Videlock, MD^{1,2,11}, Collin Bowe, BS^{2,3}, Wendy Shih, MPH⁴, Angela P. Presson, PhD⁴, Pu-Qing Yuan^{1,3,5}, Galen Cortina, MD⁵, Hua Gong, MD, PhD⁷, Sharat Singh, PhD⁷, Arlene Licudine, LVN^{1,2}, Minou Mayer, LCSW^{1,2}, Yvette Tache, PhD^{1,3,5}, Charalabos Pothoulakis, MD^{2,3} and Emeran A. Mayer, MD^{1,2,8-10}

- OBJECTIVES: Low-grade colonic mucosal inflammation has been postulated to have an important role in the pathophysiology of irritable bowel syndrome (IBS). The objectives of this study were (i) to identify serum and tissue-based immunological and neuroendocrine markers associated with mucosal inflammation in male (M) and female (F) patients with non-post-infectious IBS (non-PI-IBS) compared with healthy controls and (ii) to assess possible correlations of such markers with IBS symptoms.
- METHODS: Sigmoid mucosal biopsies were obtained from 45 Rome II positive IBS patients without a history of PI-IBS (26 F, 35.5% IBS-C, 33.3% IBS-D, 31.1% IBS-A/M) and 41 healthy controls (22 F) in order to measure immunological markers (serum cytokine levels, colonic mucosal mRNA levels of cytokines, mucosal immune cell counts) and neuroendocrine markers associated with mucosal

"Thus, these findings do not support that colonic mucosal inflammation consistently has a primary role in these patients".

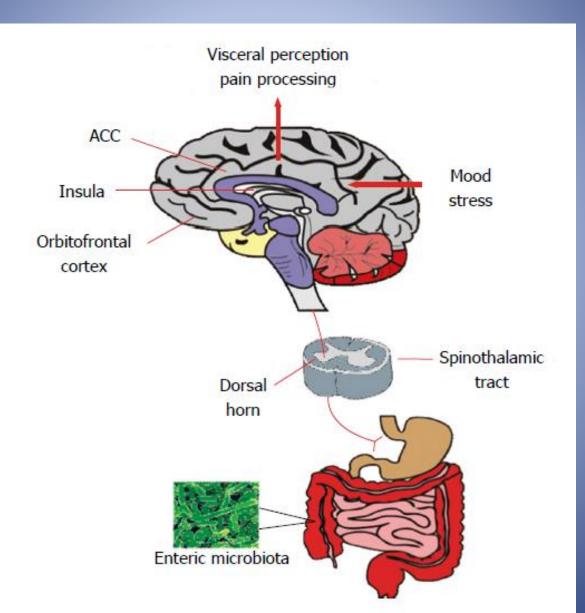
was significantly lower $(1.15\pm0.19 \text{ vs. } 2.66\pm0.56, P=0.008)$ in female, but not male, patients compared with healthy controls. No other significant differences were observed.


CONCLUSIONS: Immune cell counts and levels of cytokines and neuropeptides that are associated with inflammation were not significantly elevated in the colonic mucosa of non-PI-IBS patients, and did not correlate with symptoms. Thus, these findings do not support that colonic mucosal inflammation consistently has a primary role in these patients. However, the finding of decreased IL-10 mRNA expression may be a possible biomarker of IBS and warrants further investigation.

Microflora

- The human intestinal tract is composed of more than 500 different species of bacteria.
- There is growing evidence that supports a new hypothesis for IBS based on alterations in intestinal bacterial composition.

The Microbiota-gut Interplay Serves Many Functions


Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol. 2011;2:94. Epub 2011 Dec 7. PubMed PMID: 22162969; PubMed Central PMCID: PMC3232439

Microbiota

• Gut microbiome can influence both the cardinal symptoms and other prominent features of IBS.

• The community of bacteria in IBS is less diverse and unstable.

Microbiota and Visceral pain

Microbiota Alternations in IBS

Sample type/method	Subjects recruited	Koy Ending	Ref.
Sample type/method	-	Key finding	
(covering about 300 bacterial species)		Decreased Lactobacillus spp in IBS-D; Increased Veillonella spp in IBS-C; Differences in the Clostridium coccoides subgroup and Bifidobacterium catenulatum group between IBS patients and controls	[22]
Faecal microbiota/Q-PCR (10 bacterial groups), Culture, HPLC	IBS (26, Rome Ⅱ / Ⅲ; IBS-D = 8; IBS-C = 11, IBS-A = 7); Healthy Controls (26)	Higher counts of Veillonella and Lactobacillus in IBS vs controls; Higher levels of acetic acid, propionic acid and total organic acids in IBS vs controls	[52]
Faecal microbiota(0, 3, 6 mo)/Culture-based techniques, PCR-DGGE analysis	IBS (26, Rome II ; IBS-D = 12; IBS-C = 9; IBS-A = 5); Healthy Controls (25)	More temporal instability in IBS group; No difference in the bacteroides, bifidobacteria, spore-forming bacteria, lactobacilli, enterococci or yeasts, Slightly higher numbers of coliforms as well as an increased aerobe anaerobe ratio in IBS group	[23]
Faecal microbiota/DNA-based PCR-DGGE, RNA-based RT-PCR-DGGE	IBS (16, Rome II; IBS-D = 7; IBS-C = 6; IBS-A = 3); Healthy Controls (16)	Higher instability of the bacterial population in IES compared to controls; Decreased proportion of C. coccoides-Eubacterium rectale in IES-C	[24]
Faecal Microbiota/GC Fractionation, 165 ribosomal RNA gene cloning and clone sequencing, qRT-PCR	IBS (24, Rome II; IBS-D = 10; IBS-C = 8; IBS-A = 6); Healthy Controls (23)	Significant differences in phylotypes belonging to the genera Coprococcus, Collinsella and Coprobacillus	[20]
Faecal Microbiota/GC Fractionation, 165 ribosomal RNA gene cloning and clone sequencing, qRT-PCR	IBS (12, Rome II , All IBS-D); Healthy Controls (22)	Significant differences between clone libraries of IBS-D pa- tients and controls; Microbial communities of IBS-D patients enriched in <i>Proteobacteria</i> and <i>Firmicutes</i> , reduced <i>Actinobacteria</i> and <i>Bacteroidetes</i> compared to control; Greater abundance of the family <i>Lachnospiraceae</i> in IBS-D	[26]
Faecal Microbiota/qRT-PCR	IBS (20, Rome II; IBS-D = 8; IBS-C		[244]
FIR	MICUT	The comple groups; A phylotype with 85% similarity to C. there osuccinograes significantly different between IBS-D and travelet the travelet of the travelet of the travelet of the travelet more provident to IBS-D than controls; A phylotype with 93% singlet travelet of the travelet	
Faecal Microbiota/DGGE 165 rRNA	IES (11, Rome II); Healthy Con- trols (22)	Biodiversity of the bacterial species was significantly lower in IBS than controls; presence of <i>B. vulgatus</i> , <i>B. ovatus</i> , <i>B. uniformis</i> and <i>Parabacteroides</i> sp. in healthy volunteers distinguished them from IBS	[31]
Faecal Microbiota/DG E) is rAA, (T-PCF GC-M5	I 5 (11 Rg) us (1; R) n- 25 pa- res 6 (6)	IBS supect had significantly higher diversity Bacteroide- and Lact will proups: Less diversity for Bifidobacteria nd C. a cco ss; Elev) ed levels of amino acids and phenolic append: Bookich correlated with the abundance of Lactobacilli and Clostridium	[51]
Faecal Microbiota and sigmoid colon biopsies/ DGGE 16s rRNA	IBS (47, Rome II); Healthy Con- trols (33)	Significant difference in mean similarity index between IBS and healthy controls; Significantly more variation in the gut microbiota of healthy volunteers than that of IBS patients	[29]
Faecal Microbiota and brush duodenal samples/FISH + qRT-PCR	IBS (41, Rome II ; IBS-D = 14, IBS-C = 11; IBS-A = 16); Healthy Controls (26)	2-fold decrease in the level of bifidobacteria in IBS patients compared to healthy subjects; no major differences in other bacterial groups. At the species level, <i>B. catenulatum</i> signifi- cantly lower in IBS patients in both faecal and duodenal brush samples than in healthy subjects	[21]
Faecal Microbiota and brush duodenal samples/DGGE 16s rRNA, q-RT-PCR	IBS (37, Rome II ; IBS-D = 13, IBS-C = 11; IBS-A = 13); Healthy Controls (20)	Higher levels <i>P. acruginosa</i> in the small intestine and faeces of IBS than healthy subjects	[47]
Faecal Microbiota and colonic mucosal samples/Culture, qRT-PCR	IBS (10, Rome III, all IBS-D); Healthy Controls (10)	Significant reduction in the concentration of aerobic bacteria in faecal samples from D-IBS patients when compared to healthy controls 3.6 fold increase in concentrations of faecal <i>Lactobacil-</i> <i>lus</i> species between D-IBS and healthy controls; No significant differences were observed in the levels of aerobic or anaerobic bacteria in colonic mucosal samples between D-IBS patients healthy controls; No significant differences in mucosal samples between groups for <i>Clostridium, Bacteroides, Bifidobacterium</i> and	[46]

Faecal Microbiota and colonic mucosal samples/T-RFLP) fingerprinting of the bacterial 165 rRNA gene IBS (16, Rome Ⅲ, All IBS-D); Healthy Controls (21) 1.2-fold lower biodiversity of microbes within faecal samples [30] from D-IBS compared to healthy controls; No difference in biodiversity of mucosal samples between D-IBS and healthy controls

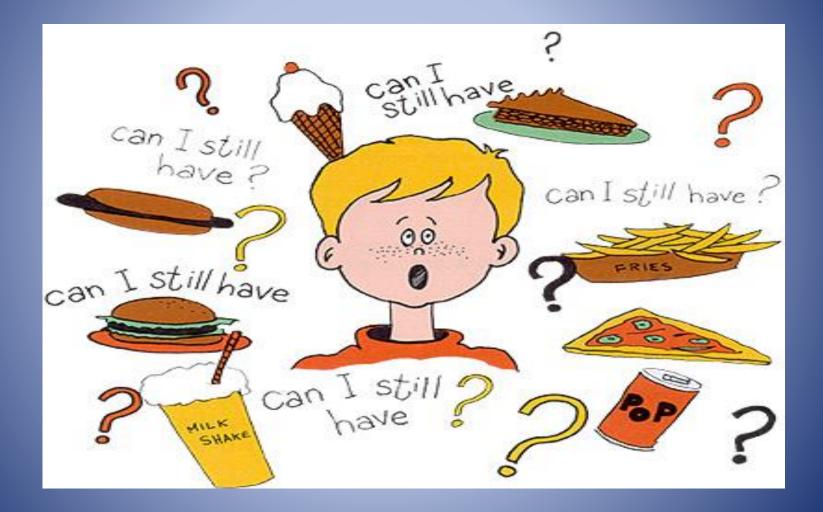
Lactobacillus species and E. coli

Postinfectious IBS

- Numerous studies have shown that IBS can be precipitated by an episode of acute gastroenteritis.
- 10% of subjects who have AGE develop IBS, with a summary odds ratio of 6 to 7.
- The 2 most significant of these are duration/severity of gastroenteritis and female sex.

Antibiotic Treatment of IBS: Support for a Gut Flora Hypothesis

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Rifaximin Therapy for Patients with Irritable Bowel Syndrome without Constipation

Mark Pimentel, M.D., Anthony Lembo, M.D., William D. Chey, M.D., Salam Zakko, M.D., Yehuda Ringel, M.D., Jing Yu, Ph.D., Shadreck M. Mareya, Ph.D., Audrey L. Shaw, Ph.D., Enoch Bortey, Ph.D., and William P. Forbes, Pharm.D., for the TARGET Study Group*

TARGET 1 and TARGET 2: In these studies, rifaximin was effective in improving IBS based on abdominal pain, stool consistency, bloating, and the primary outcome measure of global relief.

Food and IES

Meal-Induced Symptoms

- More than 60% of IBS patients report worsening of symptoms after meals
- 28% of these within 15 minutes after eating
- 93% within 3 hours

• Simren M *Digestion*. 2001;63:108-115.

Food as a trigger for IBS Symptoms

- Food allergy
- Food intolerance
- Lack of fibers?
- Others

Food Allergy

to IBS Not *P*

Non-IgE mediated reaction

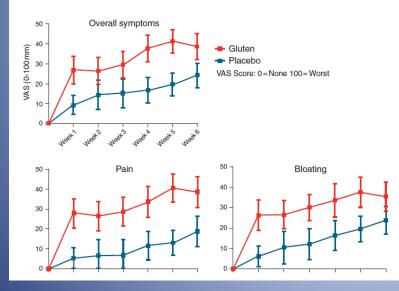
- Slower reaction
- T lymphocytes, mast cells, eosinophils involved
- Increase in mucosal eosinophils and mast cells in IBS, close association of these cells with enteric nerves in the mucosa
- Immunemediated reactions to food are probably responsible for IBS symptoms in a small proportion of adult patients with IBS.

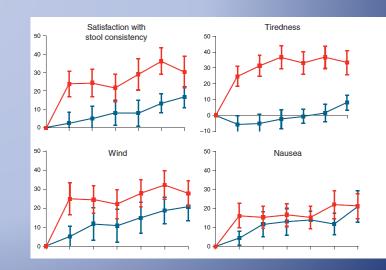
Food Intolerance

- Lactose intolerance:
 - ✓ Does not appear to be a cause of IBS
 - or to be more prevalent in individuals with IBS
 - Lactase supplementation did not improve IBS symptoms in a small study
- Fructose intolerance

 The effect of restricting fructose in IBS is not well established and testing for fructose malabsorption is not routinely recommended

"Wheat intolerance" and negative celiac tests


 wheat intolerance and genotype HLA DQ2 or DR3 without overt evidence of the celiac



Gluten Restriction

Gluten Causes Gastrointestinal Symptoms in Subjects Without Celiac Disease: A Double-Blind Randomized Placebo-Controlled Trial

Jessica R. Biesiekierski, B Appl Sci¹, Evan D. Newnham, MD, FRACP¹, Peter M. Irving, MD, MRCP¹, Jacqueline S. Barrett, PhD, BSc, MND¹, Melissa Haines, MD¹, James D. Doecke, BSc, PhD², Susan J. Shepherd, B Appl Sci, PhD¹, Jane G. Muir, PhD, PGrad Dip(Dietetics)¹ and Peter R. Gibson, MD, FRACP¹

FODMAP

Process of Elimination

To determine if certain foods are triggering symptoms of irritable bowel syndrome, some specialists recommend a low-Fodmaps diet, which stands for Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols. After six to eight weeks, the foods are gradually reintroduced at low levels to see what patients can tolerate.

SOME FOODS CONTAINING FODMAPS TO ELIMINATE:

Source: Shepherd Works and the IBS Self Help and Support Group Photos: Getty Images (Soy beans); IStockphoto (Apples, Lemon); F. Martin Ramin for The Wall Street Journal (5)

FODMAP restriction may be of value in some patients

Shepherd 2008

• <u>Gas-Forming Foods</u> :

 There is no clear evidence that IBS patients generate more gas than normal individuals, but they may be more troubled by intestinal gas

• <u>Fat</u>:

- The gastrocolonic motor response to lipid ingestion is exaggerated, rectal hypersensitivity is accentuated, and gas transit through the gut is delayed in response to duodenal lipid infusion
- No good clinical data

• Coffee

 Coffee stimulates gastrointestinal motility and can cause diarrhea in normal individuals

Coffee caused a recurrence of symptoms in 14% to
 33% of IBS patients on exclusion diets- within the

range of placebo responses in IBS.

Doctor- Patient Relationship

Nutritional therapy

- Avoid large meals
- Reduce lactose (eliminate milk, ice cream, and yogurt)
- Reduce fat to no more than 40 to 50 g/day
- Reduce sorbitol, mannitol, xylitol (mainly "sugarless" gum, read labels)
- Reduce fructose in all forms, including high-fructose corn syrup (read labels), honey, and high-fructose fruits (eg, dates, oranges, cherries, apples, and pears)
- Reduce gas-producing foods (eg, beans, peas, broccoli, cabbage, and bran)
- Eliminate all wheat and wheat-containing products
- A diet low in fermentable oligo-, di-, and monosaccharides and polyols (see reference 139)
- Eliminate wheat, banana, corn, potato, milk, eggs, peas, and coffee

FODMAP

 Low-FODMAP diets have been shown to reduce GI symptoms.

 The low-FODMAP diet also was associated with significantly lower scores for bloating, flatulence, and abdominal pain.

Table 3	Trials examining	the FODMAP-restricted	diet in IBS
---------	------------------	-----------------------	-------------

inviation del latio

out-patient a

(Australia)

primary/a

Study and clinical aetting	BS criteria	Method olo gy	Method olog y Scone*	A dive Intervention / duration	No. in FOOMAP- restricted Arm	Treatment effect in FRD Arm	No. in control arm	Treatment effect in control arm	In Favor of FCD MAP- netriction Algo Ficance
Ong et al. ⁴⁶ , secondary care out-patient† setting (Australia)	Rome II, IBS subtyped in to IBS-D, BS-C, BS-M and BS-U	Randomi æd single-blind cross-over study	2/0/0 = 2	FRD (9 g)/high (50 g) RODMAP/ 2 days per dist	15	Median composite score of 2/9 (range 0-7) on Likert scale for abdominal pain, bloating and wind	15	Median composite score of 6/9 (range 2-9) on Litert scale for abdominal pain, bloating and wind	Yee, P = 0.002 (No aubtype analysis done)
Staudacher et ol ¹⁸ , primary/secondary date out-platient setting (UK)	NICE Guidelinex, BS subtype not reported	Non-ran domixed retrospective observational	9/0/0 = 0	FRD/ NCE dietary guidelines (fibre, probiotics, exclusion dieta) /2-6 mp.nths	43	% symptom improwement: bloating in 82 %, abdo minal pain 85%, gas 85%, diamboas 83 %, constipation 67%, nausas 67%, in mposite score 86 %, % satisfied with 8M 70%	39	% symptom improvement: bloating 49%, abdominal pain 61%, gas in 50%, diambase 62%, constpation 45%, nauses 29%, increased energy levels 37%, Composite score 49%, % satisfied with BM 54%	Yee, all symptoms improved, $P < 0.05$, except constipation and diarrhoes
de Roeat et al ^{e e} , second a ry care out-patient† setting (New Zealand)	Not spedfied	Non-ran domixed prospective observational	Q/0/1 = 1	FRD instruction from a detition. No control group	90	GI symptom score (7 point Likert) at baseline/6 weeks showed improvement in	NA	NA	Yes, all symptoms improved, P < 0.05, except fieling full- long after meals, burping and

passage of mucus

A FODMAP-restricted diet was shown to be more effective than dietary guidelines in IBS

 all averations into in navaes not significant - 01-89

						period compared with baseline,			_
						P < 0.0001, but not nauses			
						(P = 0.149).			
Halmos et ol ^{4,8} , secondary	Rome III, IBS	Randomi æd	2/0/1=3	FRD (3.05 g/day)/	30	All BS VAS, bloating 24.2,	30	On VAS, bloating 451, abdominal	Yes, overall IBS, P < 0.001;
care out-patient† atting	subtyped in	control led single-		Control diet =		abdominal pain 22.5,		pain 438, dissatisfaction	similar for BS-D and C
(Australia)	to IBS-D,	blind cross-over		average of 23.7 g		dispatisfaction with stool		with stool consistency 47.8,	
	BS-C, IBS-M			FODMAP per day/		consistency 259, composite		Composite acore 137; similar	
	and IBS-U			21 days per diet		acore 73.1; similar for BS-D and C		for IBS-D and C	
Pedersen et al ⁴⁴ ; out-	Rome III, IBS	Randomi and,	2/0/1=3	FRD vs. LGG vs.	42	All BS reduction in IBS-SSS	40 ND arm	All IBS reduction in IBS-SSS 68:±107;	Yes for All IBS with IBS-SISS,
patient, secondary care	subtyped in	unblinded		ND/6 www.ia		133 ± 122; BS-D total BS-555		IBS-D total IBS-S SS 257 ± 118;	P < 0.001, BS-D, p<0.01,
out-patient† setting	to IBS-D, IBS-C,	control led tri al				153 ± 136; B.S-C total IBS-555		IBS-C total IBS-SSS 277±135; BS-A	BS-A, P = 0.01; IBS-C
(Denmark)	BS-A					200 ± 62; IBS-A 241 ± TT;		322±62; change in IBS-QOL 0.1 ± 15	aubtype not significant,
						change in IBS-QOL 8 ± 18			P < 014. Change in
									BS-QOL not significant
									E 41105 8 - 0.73

FODMAP

- Most patients found to be sensitive to FODMAPs often observe symptom improvement within the first week of trying the FODMAP-restricted diet.
- There is a clear increase in efficacy over the first 6 weeks.
- It is recommended that patients who may benefit from the diet attempt strict adherence for at least 6–8 weeks

Probiotics

Caveats in the assessment of probiotics on IBS

- IBS- heterogenic population
- IBS- problematic assessment tools
- "Probiotics": not all alike
- Prescribing a patient "probiotics" is almost like prescribing a patient "antibiotics"
- Strain selection, dose and viability may be crucial for efficacy

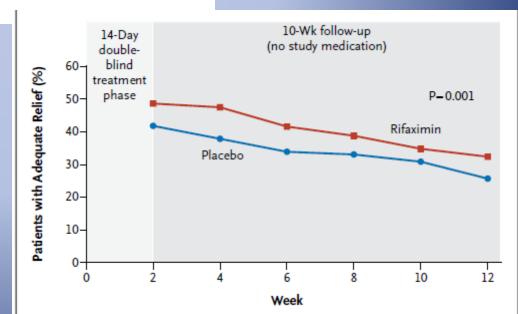
			Duration	
Reference	п	Intervention and daily dose	(weeks)	Result
Kajander <i>et al.</i> ⁽⁶⁵⁾	103	L. GG, L. rhamnosus LC705, B. breve Bb99, Propionibacterium freudenreichii spp shermanii JS	26	Significant reduction in GSS ($P < 0.015$)
Kim <i>et al</i> . ⁽⁵⁴⁾	48	VSL#3; 10 ¹¹	4	Failed to show improvement in bloating scores (PEP; <i>P</i> <0.19) Reduction in flatulence scores (<i>P</i> <0.01)
Bausserman <i>et al.</i> ⁽⁵³⁾ .	50	<i>L. GG</i> ; 10 ¹⁰	6	PEP defined as resolution of pain; failed to show benefit treatment arm v. placebo (40% v. 44%; P<0.77; children)
Niv et al. (56)	54	1 ATOO EE700. 108	00	Failed to show herefit in CCC ever placeho
O'Mahony et al. ⁽³⁷⁾	77	• Differen	t b	acteria ^{t in}
Tsuchiya <i>et al.</i> ⁽⁸⁰⁾	68			
Kim <i>et al.</i> ⁽⁷⁸⁾	25*	 Differen 	t da	nsing ^{in bloating}
Sen <i>et al.</i> ⁽⁵⁷⁾ Niedzielin	12 40			v. 55%
<i>et al.</i> ⁽⁵⁵⁾ Nobaek <i>et al.</i> ⁽⁶²⁾ Enck <i>et al.</i> ⁽⁵⁹⁾ Williams <i>et al.</i> ⁽⁷⁹⁾	60 298 52	• Mixed p	rob	iotics
Andriulli <i>et al</i> . ⁽⁵⁸⁾	267	• Differen	ter	nd points , _{in GSS}
Drouault-Holowacz et al. ⁽⁶⁹⁾	100) in GSS
Sinn <i>et al.</i> ⁽⁶⁷⁾ Kajander <i>et al.</i> ⁽⁶⁰⁾	40 86	and <i>S. thermophilus</i> LA 104 (13%); 10 ¹⁰ <i>L. acidophilus</i> SDC 2012, 2013; 10 ⁹ <i>L. GG, L. rhamnosus LC705, B. breve</i> <i>Bb99, Propionibacterium freudenreichii</i> spp shermanii JS	4 20	Significant reduction in abdominal pain ($P = 0.011$) Significant reduction in GSS ($P < 0.008$)
Guyonnet et al. ⁽⁷⁰⁾	274†	B. animalis DN 173 010	6	Although significant improvement over baseline, no benefit over placebo
Whorwell et al. ⁽⁶¹⁾	362	<i>B. infantis 35624</i> ; 10 ⁸	4	Reduction in pain score (PEP; P<0.03) Reduction in GSS (P<0.01)
Gawronska et al. ⁽⁶³⁾	37‡	<i>L. GG</i> ; 10 ⁹	4	PEP defined as resolution of pain; 33% v. 5·1% (P<0·04; children)

Parkes GS Proceedings of the Nutrition Society (2010), 69, 187–194

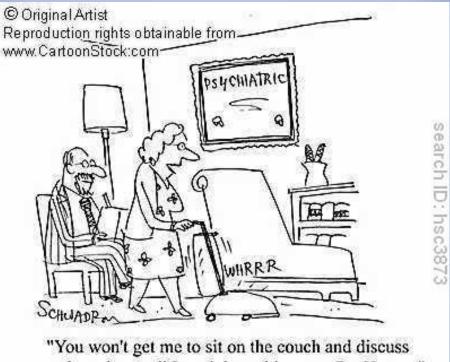
The greatest efficacy data in treating IBS are:

- B. infantis 35624 (women : diarrhea predominant)
- E. coli DSM 17252
- Both these probiotics have had initial successful trials supported by larger multi-centre studies

Parkes GS Proceedings of the Nutrition Society (2010), 69, 187–194


Antibiotic Treatment of D-IBS

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Rifaximin Therapy for Patients with Irritable Bowel Syndrome without Constipation

Mark Pimentel, M.D., Anthony Lembo, M.D., William D. Chey, M.D., Salam Zakko, M.D., Yehuda Ringel, M.D., Jing Yu, Ph.D., Shadreck M. Mareya, Ph.D., Audrey L. Shaw, Ph.D., Enoch Bortey, Ph.D., and William P. Forbes, Pharm.D., for the TARGET Study Group*

Behavioral therapies

my obsession until I straighten things up, Dr. Hunter."

Behavioral Therapies

 CBT has a direct effect on global IBS symptom improvement, independent of its effects on psychological distress.

 Symptom benefit with CBT may be mediated through changes in neural activity of corticallimbic regions that subserve hypervigilance and emotion regulation.

Relaxation Training

- Relaxation techniques are to train patients to counteract physiologic squeal of stress or anxiety.
- Five studies have assessed efficacy of relaxation therapy in IBS.
- Relaxation alone or in combination with CBT and other therapies can be beneficial for IBS symptoms.

Hypnotherapy

 Hypnotherapy has been shown to be effective for the treatment of IBS with a favorable impact on refractory IBS symptoms.

 The mechanism is unclear, although there is some evidence that it reduces gut contractility and normalizes pain thresholds after balloon rectal distension.

	Psychological the	Psychological therapies Control Risk ratio						Risk ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95%	CI Year	M-H, Bandom, 95% Cl
1.1.1 Cognitive beha								
Greene 1994	2	10	9	10	0.7%	0.22 (0.06, 0.78)	1994	← • • • • • • • • • • • • • • • • • • •
Payne 1995	3	12	9	10	1.0%	0.28 (0.10, 0.76)	1995	
Vollmer 1998	11	24	9	10	2.7%	0.51 (0.31, 0.82)	1998	
Tkachuk 2003	0	14	6	14	0.2%	0.08 (0.00, 1.25)	2003	←
Drossman 2003	51	112	36	57	3.9%	0.72 (0.54, 0.96)	2003	
Boyce 2003	27	35	25	34	4.0%	1.05 (0.80, 1.38)	2003	
Kennedy 2005	24	72	36	77	3.1%	0.71 (0.48, 1.07)	2005	
Lackner 2008	9	23	27	27	2.6%	0.40 (0.25, 0.66)	2008	
Craske 2011	18	47	9	22	2.0%	0.94 (0.50, 1.74)	2011	
Subtotal (95% CI)		349		261	20.1%	0.60 (0.44, 0.83)		•
Total events	145		166					
Heterogeneity: $\tau^2 = 0.1$		(P = 0.00)	09);	0%				
Test for overall effect: Z	(= 3.12 (P = 0.002)							
1.1.2 Relaxation train	ning or therapy							
Lynch 1989	4	11	10	10	1.6%	0.39 (0.19, 0.82)	1989	
Blanchard 1993	10	14	8	9	3.1%	0.80 (0.54, 1.20)	1993	
Keefer 2001	3	7	7	8	1.2%	0.49 (0.20, 1.20)	2001	
Boyce 2003	31	36	25	34	4.2%	1.17 (0.92, 1.49)	2003	
Van der Veek 2007	46	54	50	51	4.9%	0.87 (0.77, 0.98)	2007	-
Shinozaki 2010	2	11	7	10	0.6%	0.26 (0.07, 0.07)	2010	
Subtotal (95% CI)		133		122	15.6%	0.77 (0.57, 1.04)		-
Total events	96		107					
Heterogeneity: $\tau^2 = 0.0$		(P = 0.00)	$(4); I^2 = 71$	1%				
Test for overall effect: Z	(= 1.73 (P = 0.08)							
1.1.3 Hypnotherapy								
Galovski 1998	3	6	6	6	1.5%	0.54 (0.25, 1.16)	1998	
Simren 2004	4	14	9	14	1.2%	0.44 (0.18, 1.11)	2004	+
Lindfors 2012a	28	45	40	45	4.1%	0.70 (0.55, 0.90)	2012	
Lindfors 2012b	19	25	20	23	4.0%	0.87 (0.67, 1.15)	2012	-+
Moser 2013	23	51	31	49	3.3%	0.71 (0.49, 1.03)	2013	
Subtotal (95% Cl)		141		137	14.1%	0.74 (0.63, 0.87)		•
Total events	77		106					
Heterogeneity: τ ² = 0.0	$0; \chi^2 = 3.84, 0.1. = 4 (l)$	P = 0.43);	$l^2 = 0\%$					_
Test for overall effect: 7	= 3.74 (P = 0.0002)							

Test for overall effect: Z = 3.74 (P = 0.0002)

Ford 2014

Drug Therapy

Peripherally Acting Therapies

 Most of these peripheral acting agents are primarily targeted at individual symptoms.

• The evidence supporting the use of these agents in IBS is largely anecdotal.

Fiber supplements

- The results of the 6 trials comparing psyllium and ispaghula with placebo were pooled, yielding a total of 321 patients with IBS, with 161 in the treatment arm.
- 52% of patients treated with psyllium had persistent IBS symptoms after treatment compared with 64% of those receiving placebo
- RR of symptoms <u>not improving</u> with psyllium was 0.78 compared with placebo with a NNT of 6.

Fig 2 Forest plot of randomised controlled trials of fibre versus placebo or low fibre diet in irritable bowel syndrome.

	No with syn abdominal pain				
Subcategory and study	Treatment group	Control group	Relative risk (random) (95% CI)	Weight (%)	Relative risk (random) (95% CI)
Bran					
Soltoft 1976 ^{w2}	17/32	12/27		6.19	1.20 (0.70 to 2.04)
Manning 1977 ^{w3}	7/14	7/12	_	3.65	0.86 (0.42 to 1.74)
Kruis 1986 ^{w34}	29/40	28/40		17.86	1.04 (0.78 to 1.37)
Lucey 1987 ^{w7}	3/14	4/14		1.13	0.75 (0.20 to 2.75)
Rees 2005 ^{w1}	6/14	7/14		2.91	0.86 (0.39 to 1.91)
Subtotal (95% CI)	114	107		31.75	1.02 (0.82 to 1.27)
Test for heterogeneity: $\chi^2 = 0$.99, df=4, P=0.91, I	² =0%			
Test for overall effect: z=0.1					
Ispaghula		_			
Ritchie 1979 ^{w33}	7/12	12/12	_	7.50	0.58 (0.36 to 0.94)
Longstreth 1981 ^{w9}	17/37	16/40		6.56	1.15 (0.69 to 1.92)
Arthurs 1983 ^{w8}	11/40	14/38		4.26	0.75 (0.39 to 1.43)
Nigam 1984 ^{w35}	13/21	21/21		13.54	0.62 (0.44 to 0.87)
Prior 1987 ^{w6}	33/40	37/40		32.59	0.89 (0.75 to 1.05)
lalihal 1990 ^{w5}	2/11	3/9 -		0.80	0.55 (0.11 to 2.59)
Subtotal (95% Cl)	161	160	•	65.24	0.78 (0.63 to 0.96)
Test for heterogeneity: $\chi^2 = 7$.63, df=5, P=0.18, I	2=34.4%			
Test for overall effect: z=2.3					
Fibre (unspecified)					
Fowlie 1992 ^{w4}	10/25	7/24		3.00	1.37 (0.62 to 3.01)
Subtotal (95% Cl)	25	24		3.00	1.37 (0.62 to 3.01)
Test for heterogeneity: not a	applicable				
Test for overall effect: z=0.7	9, P=0.43	_			
Total (95% CI)	300	291	•	100.00	0.87 (0.76 to 1.00)
Total events: 155 (treatmen		-0.1	-0.2 -0.5 0 2 5	10	
Test for heterogeneity: $\chi^2 = 1$ Test for overall effect: z=1.9		Favo		avours control	

Alexander C Ford et al. BMJ 2008;337:bmj.a2313

Antispasmodics

- Abdominal pain or discomfort is a cardinal feature of IBS.
- Observation and clinical studies have suggested that an exaggerated motility response of the small bowel and colon to environmental stimuli may be responsible for the symptoms.
- For this reason antispasmodics have been and remain a mainstay of therapy for the symptoms of IBS.

Antispasmodics ACG Task Force

- Certain antispasmodics (hyoscine, cimetropium, and pinaverium) may provide short-term relief of abdominal pain/discomfort in IBS.
- Evidence for long-term efficacy is not available.
- Evidence for safety and tolerability are limited.

Antispasmodics

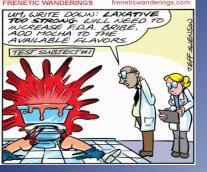
 These agents are likely to be most effective in those patients with IBS with a predominant symptom of abdominal pain.

 These agents can worsen constipation and should therefore be used cautiously in patients with IBS with a predominance of constipation.

	No with sym abdominal pain				
Subcategory and study	Treatment	Control	Relative risk (random) (95% Cl)	Weight (%)	Relative risk (random) (95% Cl)
Cimetropium	3	3			
Centonze 1988 ^{w11}	4/24	19/24		2.72	0.21 (0.08 to 0.53)
Passaretti 1989 ^{w13}	7/20	12/20		3.89	0.58 (0.29 to 1.17)
Dobrilla 1990 ^{w12}	4/35	11/35		2.25	0.36 (0.13 to 1.03)
Subtotal (95% CI)	79	79		8.87	0.38 (0.20 to 0.71)
Hyoscine			_		
Ritchie 1979 ^{w33}	8/12	12/12		6.38	0.67 (0.45 to 0.99)
Nigam 1984 ^{w35}	11/21	21/21		6.31	0.52 (0.35 to 0.79)
Schafer 1990 ^{w10}	44/182	64/178		7.17	0.67 (0.49 to 0.93)
Subtotal (95% CI)	215	211	-	19.86	0.63 (0.51 to 0.78)
Pinaverium					
Levy 1977 ^{w22}	6/25	18/25		3.62	0.33 (0.16 to 0.70)
Delmont 1981 ^{w27}	6/30	13/30		3.15	0.46 (0.20 to 1.05)
Viral 1987 ^{w24}	14/39	26/39		5.66	0.54 (0.34 to 0.87)
Subtotal (95% CI)	94	94		12.44	0.47 (0.33 to 0.67)
Trimebutine					
Moshal 1979 ^{w15}	3/10	4/10		1.78	0.75 (0.22 to 2.52)
Fielding 1980 ^{w20}	17/30	13/30		5.29	1.31 (0.78 to 2.19)
Ghidini 1986 ^{w14}	8/30	10/30		3.39	0.80 (0.37 to 1.74)
Subtotal (95% CI)	70	70		10.46	1.08 (0.72 to 1.61)
Mebeverine					
Kruis 1986 ^{w34}	35/40	28/40		8.06	1.25 (0.99 to 1.58)
Subtotal (95% CI)	40	40	◆	8.06	1.25 (0.99 to 1.58)
Otilonium					
D'Arienzo 1980 ^{w23}	1/14	4/14	<	0.70	0.25 (0.03 to 1.97)
Baldi 1983 ^{w25}	3/15	7/15		1.95	0.43 (0.14 to 1.35)
Castiglione 1991 ^{w26}	8/30	20/30		4.24	0.40 (0.21 to 0.76)
Glende 2002 ^{w16}	99/157	124/160		8.79	0.81 (0.70 to 0.94)
Subtotal (95% CI)	216	219		15.68	0.55 (0.31 to 0.97)
Alverine					
Mitchell 2002 ^{w18}	26/53	31/54		6.82	0.85 (0.60 to 1.22)
Subtotal (95% CI)	53	54	-	6.82	0.85 (0.60 to 1.22)
Dicycloverine (dicyclomine)					
Page 1981 ^{w21}	21/48	33/49		6.64	0.65 (0.45 to 0.95)
Subtotal (95% CI)	48	49		6.64	0.65 (0.45 to 0.95)
Pirenzipine					
Gilvarry 1989 ^{w17}	7/12	6/12		3.61	1.17 (0.56 to 2.45)
Subtotal (95% CI)	12	12		3.61	1.17 (0.56 to 2.45)
Prifinium					
Piai 1979 ^{w19}	3/9	6/9		2.29	0.50 (0.18 to 1.40)
Subtotal (95% CI)	9	9		2.29	0.50 (0.18 to 1.40)
Propinox					
Pulpeiro 2000 ^{w28}	4/39	3/36		1.36	1.23 (0.30 to 5.13)
Subtotal (95% CI)	39	36		1.36	1.23 (0.30 to 5.13)
Rociverine					
Ghidini 1986 ^{w14}	11/30	10/30		3.93	1.10 (0.55 to 2.19)
Subtotal (95% CI)	30	30		3.93	1.10 (0.55 to 2.19)
Total (95% CI)	905	903	•	100.00	0.68 (0.57 to 0.81)
Total events: 350 (treatment)	, 495 (control)		-		
			.1 -0.2 -0.5 0 2 5 1		
			avours Favours contro		
		tr	eatment contro	L	

Fig 3 | Forest plot of randomised controlled trials of antispasmodics versus placebo in treatment of irritable bowel syndrome. Events are number of patients with either global symptoms of irritable bowel syndrome or abdominal pain unimproved or persistent after treatment. See bmj.com for individual tests for heterogeneity and for overall effect

Peppermint Oil


• Peppermint oil is effective and well tolerated in patients with IBS. (6 trails).

 It is commonly enteric coated or contains a barrier that controls the location in the digestive system where the oil is released.

Peppermint Oil

	No with sym abdominal pain								
Study	Treatment group	Control group			tive risk 1) (95% CI)			Weight (%)	Relative risk (random) (95% Cl)
Lech 1988 ^{w29}	10/23	18/24		-	_			23.82	0.58 (0.34 to 0.98)
Liu 1997 ^{w30}	14/55	34/55	-					25.33	0.41 (0.25 to 0.68)
Capanni 2005 ^{w32}	18/91	56/87						29.58	0.31 (0.20 to 0.48)
Cappello 2007 ^{w31}	10/28	19/29			-			21.27	0.55 (0.31 to 0.96)
Total (95% CI)	197	195		•				100.00	0.43 (0.32 to 0.59)
Total events: 52 (treatme	nt), 127 (control)		0.1 0.2	0.5			10		
Test for heterogeneity: χ^2	e=4.36, df=3, P=0.23, I	² =31.1%	-0.1 -0.2	-0.5	0 2	5	10		
Test for overall effect: z=	5.39, P<0.001		Favours treatment				ours/ ntrol		

Fig 4| Forest plot of randomised controlled trials of peppermint oil versus placebo in irritable bowel syndrome. Events are number of patients with either global symptoms of irritable bowel syndrome or abdominal pain unimproved or persistent after treatment

Laxatives

- The use of laxatives in the treatment of IBS-C has evolved from their known effect on the symptoms of constipation.
- Only polyethylene glycol PEG has been assessed in the treatment of IBS.
- PEG was shown to improve stool frequencybut not abdominal pain.

Antidiarrheals

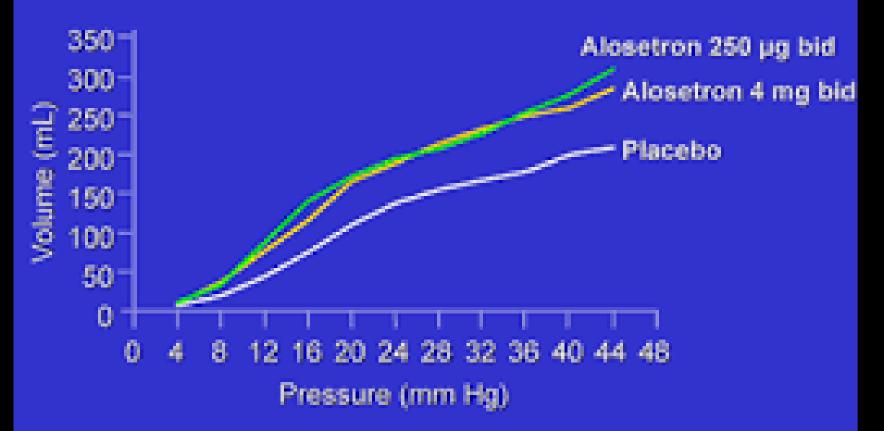
 Studies have reported accelerated small bowel and colon transit times as well as exaggerated motility patterns in those with IBS-D.

• Only loperamide has been evaluated in RCTs for the treatment of IBS.

Antidiarrheals

- Loperamide is an effective agent for treatment of diarrhea, improving stool frequency and stool consistency.
- Loperamide is not more effective than placebo at reducing abdominal pain or global symptoms of IBS.
- Safety and tolerability data on loperamide are lacking.

Serotonergic Agents


- Serotonin (5-HT) is the neurotransmitter primarily produced and stored in enterochromaffin cells located throughout the intestinal epithelium.
- 95% of total body concentration of 5-HT resides in the gastrointestinal tract.
- Acting through the intrinsic and extrinsic afferent nervous system of the GIT, 5-HT plays an important role in various aspects of gastrointestinal sensory, secretory, absorptive, and motility function.

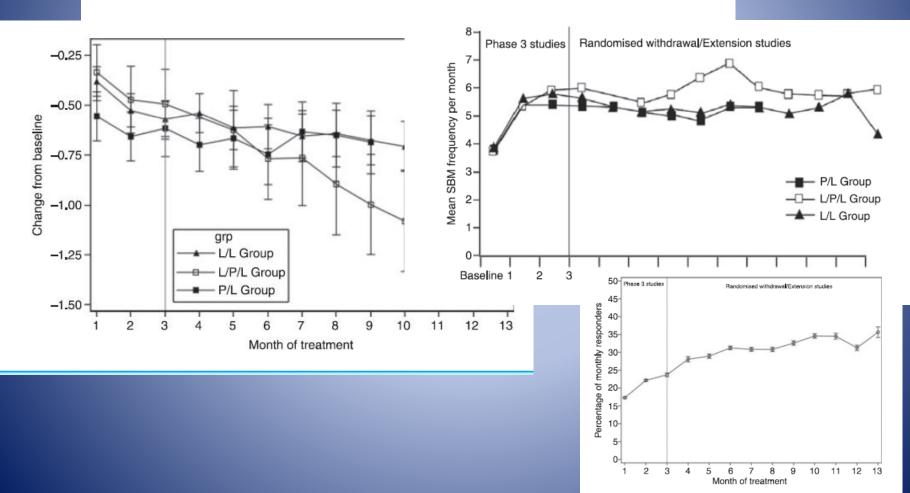
Alosentron

- Alosetron is the only 5-HT₃ antagonist approved by FDA for the treatment of IBS-D
- Alosetron is more effective than placebo at relieving global IBS in male and female patients withoti Available in Israel
- Potentially serious side effects include constipation and colonic ischemia.
- The benefits and harms balance for alosetron is most favorable in women with IBS-D who have not responded to conventional therapies.

Colonic Compliance

Delvaux30 et al. Alment/Rammaco/Zhox 1998 12:349-855

Chloride channel activator

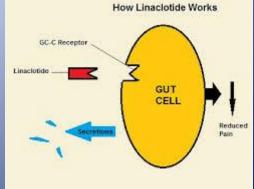


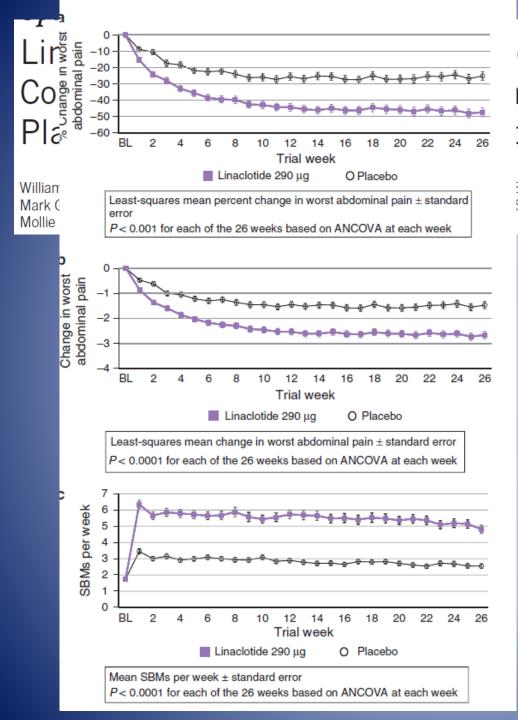
 Lubiprostone is the only chloride channel activator with FDA approval for the management of IBS-C.

 Lubiprostone in a dose of 8µg twice daily is more effective than placebo in relieving global IBS symptoms in women with IBC-S

Safety and patient outcomes with lubiprostone for up to 52 weeks in patients with irritable bowel syndrome with constipation

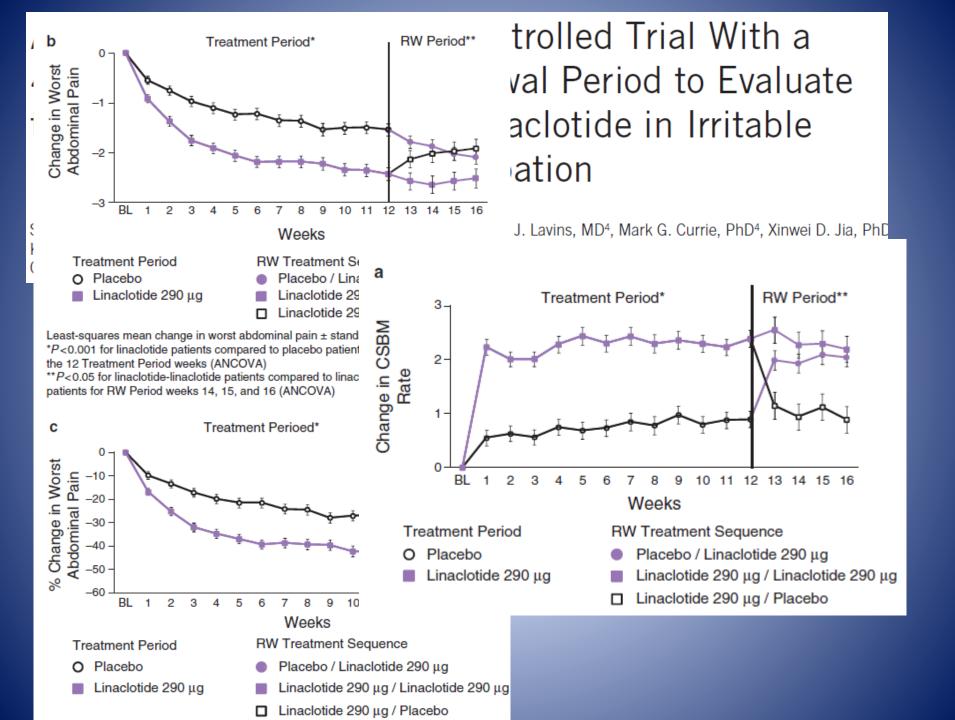
W. D. Chey*, D. A. Drossman[†], J. F. Johanson[‡], C. Scott[§], R. M. Panas[§] & R. Ueno[§]

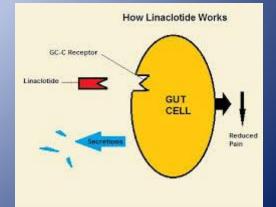

Chloride channel activator



Not Available in Israel

Guanylate Cyclase-C Agonist: Linaclotide


- Linaclotide increases intestinal fluid and electrolyte secretion, thereby improving the symptoms of IBS-C.
- Linaclotide also increases extracellular cGMP, which has been shown to reduce the mechanosensitivity of colonic nociceptors in animal models.


drome With ized, Double-blind, e Efficacy and Safety

Shiff, MD⁴, Caroline B. Kurtz, PhD³, Shao, MS³, Donald A. Fitch, MPH³,

Guanylate Cyclase-C Agonist: Linaclotide

Not Available in Israel

Centrally Acting Therapies for Irritable Bowel Syndrome

- The use of psychotropic agents for FGIDs has grown significantly in the past 2 decades.
- Every 1 in 8 patients with IBS is offered an antidepressant.
- There is a decreased relative risk of persistent IBS symptoms with antidepressant treatment.
- NNT 3-4:1.

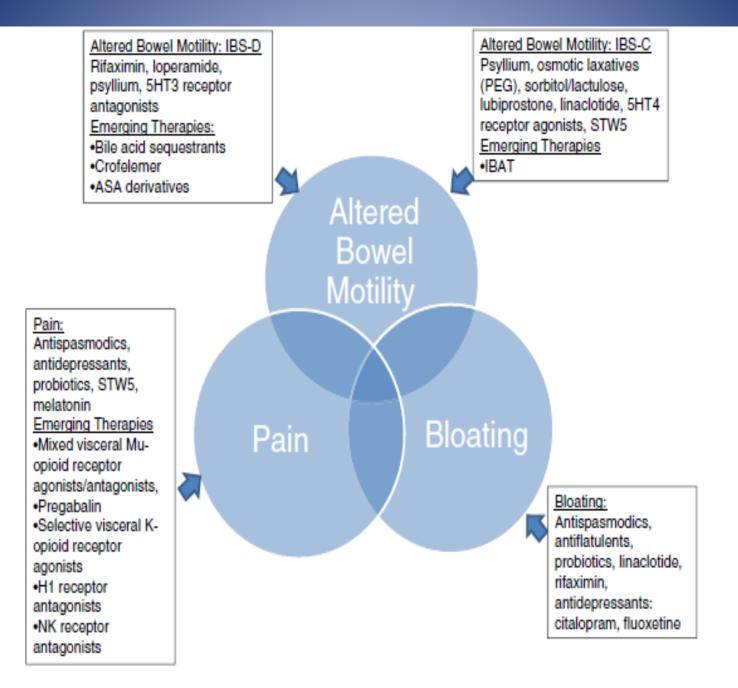
Centrally Acting Therapies

Potential benefits for use of psychopharmacological agents in FGIDs

Central effects:

- 1. Alters central pain perception: analgesia or antihyperalgesia.
- Therapeutic effects on mood: to manage general anxiety, hypervigilance, symptomrelated anxiety, agoraphobia, and increased stress responsiveness.
- Treatment of associated psychiatric disorders: depression, posttraumatic stress disorder, somatization.
- 4. Treatment of associated sleep disturbances.

Peripheral effects:


- 1. Peripheral analgesic effects: alters visceral afferent signaling.
- Effect in GI physiology (motility and secretion) via effects on cholinergic, noradrenergic, and serotonergic pathways.
- 3. Smooth muscle effects on viscera, eg, gastric fundic relaxation.

Psychotropic agents

- Four major classes of psychotropic agents of interest in IBS are :
- **Tricyclic antidepressants**
- **Selective serotonin reuptake inhibitors**
- Serotonin-norepinephrine reuptake inhibitors
- Atypical antipsychotics.
- TCAs and SSRIs have been most widely studied.
- SNRIs are gaining popularity for treatment for other chronic pain conditions such as fibromyalgia and are likely to be further explored in IBS and other FGIDs.

	Antidepressants		Placebo		Risk ratio			Risk ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl	
1.1.1 Tricyclic antidepr	ossants								
Heefner, 1978	10	22	12	22	4.5%	0.83 (0.46, 1.51)	1978		
Myren, 1982	5	30	10	31	2.1%	0.52 (0.20, 1.33)	1982		
Nigam, 1984	14	21	21	21	9.8%	0.67 (0.50, 0.92)	1984		
Boerner, 1988	16	42	19	41	5.6%	0.82 (0.50, 1.36)	1988		
Bergmann, 1991	5	19	14	16	3.0%	0.30 (0.14, 0.65)			
Vij. 1991	14	25	20	25	7.5%	0.70 (0.47, 1.04)	1991		
Drossman, 2003	60	115	36	57	11.0%		2003		
Vahedi, 2008	8	27	16	27	3.8%		2008		
Talley, 2008	0	18	5	16	0.3%		2008 🗲		
Abdul-Baki, 2009	34	59	36	48	10.7%	0.77 (0.58, 1.01)			
Ghadir, 2011	14	28	20	24	6.5%	0.44 (0.28, 0.70)	2011		-
Subtotal (95% Cl)		416		328	64.7%	0.66 (0.56, 0.79)		•	
Total events	180		209						
					10- 359				
Test for overall effect:	Z- 4.61 (P	< 0.00	001)						
1.1.2 Selective serotonin re-uptake inhibitors									
Kuiken 2003	9	19	12	21	4.4%		2003		
Tabas 2004	25	44	36	46	10.0%		2004		
Vahedi 2005	6	22	19	22	3.5%	and the second s	2005		
Tack 2006	5	11	11	12	3.7%	0.50 (0.25, 0.97)			
Talley 2008	5	17	5	16	1.8%	and a farmed arrest	2008		
Masand 2009	15	36	26	36	6.8%	0.58 (0.37, 0.89)	and the second		_
Ladabaum 2010	15	27	12	27	5.1%	1.25 (0.73, 2.15)	2010		
Subtotal (95% Cl)		176		180	35.3%	0.68 (0.51, 0.91)		-	
Total events	80		121						
Heterogeneity: $\tau^2 = 0.07$; $\chi^2 = 11.85$, d.f. = 6 (P = 0.07); $l^2 = 49\%$									
Test for overall effect:	Z = 2.57 (P	- 0.01)							
Total (95% Cl)		592		508	100.0%	0.67 [0.58, 0.77]		•	
Total events	260		330						
Heterogeneity: $\tau^2 = 0.03$; $\chi^2 = 27.09$, d.f. = 17 (P = 0.06); l ² = 37% Test for overall effect: Z = 5.39 (P = 0.00001) 0.1 0.2 0.5 1 2 5 10									
Test for subgroup diffe				P = 0.	88), / ² - 0	96	an	Favors Favors place tidepressants	abo

Ford et al. 2014

Complementary and Alternative Medicine

- CAMs are commonly used by patients with IBS, particularly acupuncture and herbal medicines.
- Well-controlled clinical trials are lacking to support CAM use in IBS.
- Nevertheless, several treatments, particularly some probiotics and herbs (eg, peppermint oil), suggest that they may have a benefit in IBS.

Prebiotics

- Non-digestible food ingredient that act by selectively stimulating the growth and/or activity of one of a limited number of potentially healthpromoting bacteria in the colon, most notably lactobacilli and bifidobacteria.
- Most commonly carbohydrates.
- Can also be found in a variety of food sources such as bananas, garlic, wheat, rye, and asparagus

Prebiotics

- Only a few studies have been conducted on the role of prebiotics in patients with IBS.
- The prebiotic trans-GOS improved IBS symptoms, which resulted in significant improvement in stool consistency, flatulence, and bloating.
- The prebiotic trans-GOS significantly increased fecal bifidobacteria counts.

Acupuncture

 Thought to alter visceral sensation and motility by stimulating the somatic nervous system and the vagus nerve.

Acupuncture

Table 1											
Selected randomized controlled trials of acupuncture vs sham acupuncture for IBS											
Study	Design	Patients	Control	Outcome Measures	Main Results						
Forbes et al, ³⁰ 2005	DB, parallel group 10 sessions over 10 wk	59 patients with Rome I IBS	Sham	Primary: decrease in symptom score at week 13 Others: weekly assessments	No difference between acupuncture and sham (40.7% vs 31.2%, P>.05) Both groups improved						
Schneider et al	No evid	compared with baseline No difference between									
	10 sessions over 5 wk	Study stopped early because of poor enrollment		by FDDQL Others: BDQ, PHQ-D, SF-36 at baseline, at the end of therapy, and at 3 mo	acupuncture and sham (11% and 10% increase in global FDDQL score) Both groups improved compared with baseline No significant AEs						
Lembo et al, ¹⁹ 2009	DB, parallel group 6 session over 3 wk	230 patients with Rome II IBS	Sham	Primary: IBS-GIS Others: IBS-AR, IBS-SSS, IBS-QoL	No difference between acupuncture and sham (41% vs 32%, P = .25) Both groups improved compared with waiting-list group (37% vs 4%, P<.001) No significant AEs						

Herbal Medicines

- Based on the use of plant and plant extracts as remedies to treat a variety of symptoms and diseases.
- Typically involves combining several herbs to obtain a desired effect.
- 4 studies were considered to be of good quality.
- These trials showed these herbal medicines to be effective in relieving IBS symptoms, including abdominal pain, constipation, and diarrhea.

Herbal Medicines

• The best studied herbal medicines for IBS are Tong xie yao fang (TXYF), STW 5 and STW 5-II.

• STW5 :

 bitter candytuft, chamomile flower, peppermint leaves, caraway fruit ,liquorice root, lemon balm leaves, celandine herbs, angelica root and milk thistle fruit

STW5II :

bitter candytuft, chamomile flower, peppermint leaves, caraway fruit, liquorice root and lemonbalm leaves

Summary

Summary

• IBS is a significant medical problem

• IBS is multifactorial problem

• The available treatment optipns are restricted

Integrative treatment approach is needed

NEVER,

under any circumstances, take a sleeping pill and a laxative on the same night.

